일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 자바
- Machine Learning
- ack
- 디자인 패턴
- 클러스터링
- 코드트리
- cpp class
- c++
- OOP
- 넘파이 배열
- python
- lambda
- 코딩테스트
- 데이터 분석
- 넘파이 기초
- 코딩테스트실력진단
- cpp
- NumPy
- 파이썬
- 합성곱 신경망
- 넘파이
- java
- 네트워크 기초
- 코테
- 데이터 마이닝
- 기계학습
- Design Pattern
- numpy 기초
- 머신러닝
- 차원축소
- Today
- Total
목록합성곱 신경망 (2)
준비하는 대학생
합성곱 신경망(CNN)은 딥러닝에서 이미지 인식, 음성 인식 등 다양한 분야에서 성공적으로 활용되고 있습니다. 풀링 (Pooling) 풀링은 CNN에서 중요한 역할을 합니다. 특성 맵에서 중요한 정보를 보존하면서 크기를 줄여 계산 부하를 감소시키고, 과적합을 방지합니다. 최대 풀링 (Max Pooling): 윈도우 내에서 가장 큰 값을 선택하여 특성을 요약합니다. 중요한 정보를 강조하고, 더 뚜렷한 특징을 추출합니다. 평균 풀링 (Average Pooling): 윈도우 내 모든 값의 평균을 계산하여 정보를 압축합니다. 더 부드러운 특성 맵을 생성합니다. CNN의 핵심 요소 중 하나는 풀링(pooling)입니다. 풀링은 CNN의 합성곱 층에서 생성된 특성 맵의 차원을 줄여주는 다운샘플링 과정입니다. 이는 ..
피드 포워드 신경망, 특히 다층 퍼셉트론(MLP)은 기계 학습 분야에서 분류와 회귀 문제를 해결하기 위해 널리 사용되고 있습니다. 이러한 신경망은 입력 벡터를 받아 여러 개의 숨겨진 층을 거치면서 변환을 수행하고, 마지막으로 출력 층을 통해 예측을 수행합니다. 각 층은 일련의 노드(또는 뉴런)로 구성되며, 각 노드는 가중치와 활성화 함수를 통해 이전 층으로부터의 신호를 변환합니다. 다층 퍼셉트론의 기본 구조 MLP의 기본 구성 요소는 다음과 같습니다. 입력 층: 실제 데이터를 네트워크에 주입하는 레이어입니다. 숨겨진 층: 하나 이상의 층으로 구성되며, 각 층은 여러 노드로 구성됩니다. 이 노드들은 가중치와 함께 활성화 함수를 통해 입력을 처리합니다. 출력 층: 최종 예측을 수행합니다. 분류 문제의 경우,..