일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- numpy 기초
- 넘파이 배열
- cpp
- 코드트리
- cpp class
- ack
- python
- 차원축소
- 디자인 패턴
- 코딩테스트
- NumPy
- 넘파이 기초
- 자바
- OOP
- 코딩테스트실력진단
- 기계학습
- 클러스터링
- Design Pattern
- c++
- 데이터 마이닝
- 파이썬
- 데이터 분석
- lambda
- java
- 네트워크 기초
- 합성곱 신경망
- Machine Learning
- 넘파이
- 코테
- 머신러닝
- Today
- Total
목록머신러닝 (3)
준비하는 대학생
의사결정 나무란? 의사결정 나무(Decision Tree)는 예측 모델 중 하나로, 독립 변수의 조건에 따라 종속 변수의 값을 예측하는 데 사용됩니다. 이 모델은 '나무'라는 이름처럼, 뿌리에서 시작해 각 분기점(node)에서 특정 기준에 따라 데이터를 나누고, 마지막에는 각각의 잎 노드(leaf node)로 데이터를 분류합니다. 의사결정 나무는 분류와 회귀 모두에 사용될 수 있으며, 간단하고 해석하기 쉬운 모델로 많이 사용됩니다. 작동 원리 의사결정 나무의 핵심 원리는 '불순도(impurity)'를 최소화하는 방향으로 데이터를 분할하는 것입니다. 불순도는 일반적으로 지니 계수(Gini Index), 엔트로피(Entropy), 정보 이득(Information Gain) 등을 사용해 측정합니다. 분류 기준..
1. 슬라이싱 기본 개념 파이썬에서 슬라이싱은 리스트, 튜플, 문자열 등의 시퀀스 자료형에서 연속된 범위의 데이터를 추출하는 기능을 제공합니다. 슬라이싱은 다음과 같은 형식으로 사용합니다. sequence[start:stop:step] 여기서 start는 시작 인덱스, stop은 종료 인덱스, step은 간격을 나타냅니다. start와 stop은 생략 가능하며, 생략 시 기본적으로 start는 0, stop은 시퀀스의 길이로 설정됩니다. step은 생략 가능하며, 생략 시 기본적으로 1로 설정됩니다. 2. NumPy 확장 슬라이싱 NumPy에서는 기본 슬라이싱 기능을 확장하여 다차원 배열에서도 적용할 수 있습니다. 각 축(axis)에 대해 슬라이싱을 적용하여 다양한 형태의 데이터를 추출할 수 있습니다. ..
zeros() NumPy에서 zeros() 함수는 모든 요소가 0인 배열을 생성하는 함수이다. 함수의 구문은 다음과 같다. numpy.zeros(shape, dtype=float, order='C') shape: 생성할 배열의 모양(shape)을 지정한다. 정수(int) 또는 정수들로 이루어진 튜플(tuple)로 지정한다. - 예를 들어, (3, 4)는 3행 4열의 2차원 배열을 의미한다. dtype: 생성할 배열의 자료형(data type)을 지정한다. (기본값: float) order: 생성할 배열의 메모리 저장 순서(order)를 지정한다. (기본값: 'C', 'C' or 'F' 로 지정한다.) 'C': C-style 메모리 저장 순서. 배열의 마지막 차원을 가장 먼저 변경 'F': Fortran-..